Proportional Reasoning

Marian Small, 2013

I wonder!

• How long will it take you before you've turned on a light 100 times?

Proportional reasoning

 deliberate use of multiplicative relationships to compare quantities and to predict the value of one quantity based on the values of another.

What does the light problem have to do

with proportional reasoning?

Another term

• multiplicative thinking

Why is this topic important?

- useful in real life
- in so many places in math curriculum from K – 12

- Exchanging coins
- Exchanging currency

- Changing measurement units, e.g. centimetres to inches
- Choosing a best buy in terms of money or fuel efficiency or...

- Calculating time based on speed
- Growth rates for children/ percentiles

- Drawing scale diagrams to decorate
- Xerox reductions

In the curriculum

Most obvious spots

- Grades 4 8: sections under number entitled Proportional Reasoning
- Grade 9: expectations related to problems arising from applications of percent, ratio, rate and proportion

- Grade 1-2: skip counting
- Grade 1 on: any measuring activity using units

- Grade 2 on: place value work
- Grade 2- 5: coin/money exchanges

- Grade 2: tally charts
- Grade 3 on: multiplication/division

- Grade 3 on: fractions
- Grade 3 on: graphs with scales

- Grade 3 on: probability
- Grade 4 on: solving problems relating to magnitudes of 1000, etc.

- Grade 4 on: area/volume formulas
- Grade 4 on: unit conversions
- Grade 4 on: linear patterns

- Grade 5 on: mean of a set of data
- Grade 6 on: pattern rules involving linear patterns

- Grade 6 on: percent work
- Grade 6: rotation work with patterns

- Grade 7 on: similarity, dilatations
- Grade 7 on: solving linear equations by, for example, multiplying both sides by the same amount

- Grade 8 10: linear relationships
- Grade 10: midpoint formula
- Grade 10 on: trigonometry

- Grade 11: arithmetic sequences
- Grade 11: simple interest
- Grade 11: certain aspects of transformations of functions

- Grade 11 workplace: unit rates, taxes, discounts, etc.
- Grade 12: average rate of change

What about

- the images on the cover slide?
- Choose one of those images and think about how it relates to proportional reasoning.

Problem: If 24 items are to be distributed to Ann and Ben in a ratio of 3:5, how many does each person get?

First solve it (with a partner) your own way.

Intuitive:

- Think half and half (12 and 12)
- Realize it's wrong.
- So try something else, e.g. 8 and 16.
- Realize it's wrong, but close.
- So try 9 and 15.

Additive: Take 8 from the pile of 24 and distribute 3 to Ann and 5 to Ben and repeat until the pile is gone.

Equivalent ratio: Realize that 3:5 is equivalent to 9: 15 and 9 + 15 = 24, so Ann gets 9 and Ben gets 15.

Finding the unit:

Think of 24 as the whole. Divide the whole into 3 subunits of size 8 and conclude that in every subunit, 3 belong to one person and 5 the other. Since there are 3 subunits, the numbers each gets are 3x 3 and 3x5.

• Determining the part from the whole: Take 3/8 of 24 and 5/8 of 24.

• **Proportion:**

$$\frac{3}{x} = \frac{5}{24-x}$$

x is what Ann gets and 24 – x is what Ben gets.

72 - 3x = 5x and x = 9

Big Idea

- It is often useful to think of one amount as how many of another amount.
- e.g. one loonie as 4 quarters
- 1 week as 7 days
- 1 wall as 5 panels
- 300 m as 3 sets of 100m
- 20 eggs as 1 2/3 dozen

Related important ideas

• If you use a bigger unit, you need fewer of them.

Related important ideas

• If units are close in size, you need about the same number of one as another to describe an amount.

Related important ideas

• If units are related, you can use that relationship to predict how many of one unit if you know how many of the other.

Comparing changes

Which price changed the most?

\$46 945.00 to \$44 999.00

\$5.99 to \$2.99

Marian Small, 2013 36
Primary version

Primary version

Related important ideas

 Any number can be compared to any other number multiplicatively, e.g. 9 can be compared to 2 by thinking of it as 4 ¹/₂ twos.

And 2 can be compared to 9 as 2/9 of a 9.

Related important ideas

- Two numbers can be far apart from an additive point of view but not from a multiplicative point of view, e.g. 1000 and 100 are 900 apart, but 1000 is only 10 100s.
- Or vice versa, 10 and 6 are 4 apart additively, but both are between 1 and 2 6s.

Related important ideas

- Using a fraction, decimal or percent is a way of comparing numbers multiplicatively.
- For example, 2/3 tells us that 2 is only 2/3 of a 3.
- 0.4 is a way to compare 4 to 10
- 35% is a way to compare 35 to 100

Let's look at the types of

- problems students might solve that involve proportional reasoning.
- As we move forward, think about how critical representation will be in students making sense of the tasks.

42

Costs

\$15 for 6 boxes

\$?? for 4 boxes

43

Ways to solve

• 2 boxes cost \$5, so 4 boxes cost \$10

Ways to solve

1 box costs \$2.50 (15 ÷ 6),
so 4 boxes cost \$10 (4 x 2.50)

45

Ways to solve

• 12 boxes cost \$30, so 4 boxes cost \$10

Dogs

- 1 out of every 3 Canadian households has a dog.
- About how many dogs would you predict for the students in your class?
- How might a student represent this?

More advanced version

- On average, Canadians consume 18% of their daily calories at breakfast.
- Is that true in your class?

Probability

- You are pulling out a counter from each bag.
- Which bag gives you the best chance of pulling out a red?

Speeds

- A car goes 280 km in 3 hours.
- How far, at that speed, will they go in another 1.5 hours?

Fraction comparisons • How do you know that $\frac{18}{37}$ is a bit less than $\frac{1}{2}$?

Length

• How long is a line of 1 000 000 pennies?

Printer time

 <u>http://mrmeyer.com/threeacts/</u> <u>printjob/</u>

Getting to 1000

• Which sequence will get to 1000 first?

15, 25, 35, 45,.... 500, 502, 504,...

Marian Small, 2013

Changing measurements

- A container holds [] L .
- If you measured how much it holds in quarts, it would be [] + 10 quarts.

• How might a student represent this problem to help him/her solve it?

Changing measurements

- 1 quart = 0.946 L
- 1 0.946 = 0.054 so

Marian Small, 2013

How much faster?

• You normally drive 90 km/h on a certain road. How much faster would you have to go to save 15 minutes on a 400 km trip on that road?

Functions

 How much faster is the function shown on the next slide growing near x = 10 than near x = 6?

Estimation

A Fermi problem, e.g. Estimate the number of square centimetres of pizza that all of the students in Ottawa eat in one week.

What can you do to build proportional reasoning?

• Many suitable tasks are suggested as models.

- You can represent a certain amount of money with exactly 6 identical coins.
- How much could it be worth?

And continue by asking

- How did I know that nobody would say \$1.00?
- Why are some amounts you said so much more than other amounts?
- Why is the number you said even?

• You can arrange a batch of ABOUT 50 counters into equal groups. How many groups and of what size might they be?

Follow up by asking

- What was the biggest group size anyone had? Why?
- When did someone have a lot of groups?
- When did someone have a big group size?
- When could there be 2 groups?

How many marbles do you think the big container could hold?

Choice 1:

Choice 2:

Common questions:

- Are there more than 10 marbles in the big container? How do you know?
- Do you think there are more than 20 marbles? Why or why not?
- Did it matter how wide the dark blue container (with 10 marbles) was?
- How?

Common questions:

- Did it matter how high the dark blue container of 10 was?
- How?
- How did you decide how many marbles?
- What if there had only been 5 marbles in the small can? How would your answer change?

• How many pink rods would it take to measure the table?

• How many nickels would it take to have 75¢?

- How many ears would I draw if I draw 8 cows?
- How many legs?

How many numbers would I need to write (say) to continue this way to get to 50?
 12, 14, 16, 18, 20,....
- You can show an amount of cookies exactly using groups of 6 cookies.
- How do you know that you can also show it exactly using groups of 3 cookies?
- What about using groups of 4 cookies?

You could

regularly use multiplicative language such as:

- Twice as much
- Four times as big
- Half as many
- Two thirds as heavy

- I read three times as many books as my sister.
- How many might we each have read?
- Do you think I could have read exactly 20 books?

A Colourful Spinner

- I spin a spinner.
- I am twice as likely to get red as blue.
- I am half as likely to get blue as green.
- What could the probability of green be?

76

Possibilities

Marian Small, 2013

77

Examples

• Create a sentence that uses the words double, triple and the numbers 3 and 8.

Examples

For example:

- If you double 3 and add triple 8, you get 30.
- Triple 3 is less than double 8.
- We ordered 8 triple scoops and 3 double scoops for the team.

You know that the yellow arrow is a little longer than the blue one. Both are whole number amounts.

What could ? be? How do you know?

80

 A sentence has 40 letters in it. What number of words do you think it probably has? Why?

- Sam has 50 dimes.
- If she traded for nickels, how many would she get?
- If she traded for quarters, how many would she get?
- How could you show this?

82

• About how many ceiling tiles are there in the whole school?

 A number that can be written in the form a^b is about 2/3 of a number that can be written in the form c^d. What could a, b, c and d be?

- You draw a scale diagram and a ____ m distance is represented as ____ cm.
- Choose values for the blanks.
- Then describe how a 17 m and 3.2 m distance would be represented.

A function grows at about the same rate as f(x) = 5x - 100. What could it be? Explain.

- When x increases by 20, y decreases by 3.
- What equation could relate x to y?

Notice

- To get from the pattern
- 2, 4, 6, 8, 10,... to
- 5, 10, 15, 20, 25,...
- You can take half and multiply by 5.

Notice

- To get from the pattern
- 2, 4, 6, 8, 10,... to
- 11, 21, 31, 41, 51..
- You can take half and multiply by 10 and add 1.

There are two linear patterns.

- To get from pattern 1 to pattern 2:
- Subtract 1
- Take half
- Multiply by 3
- Add 5.

What are they?

- The perimeter of one square is 1/3 as long as the perimeter of another. What do you know about the side lengths?
- How could you represent this?

- Jane is 8. Her mom is 38.
- When did or will her mom be twice as old as Jane?
- When would it happen again (or would it)?

We are going to work on problems

- You will have a choice of problems, depending on the level of interest to you.
- You will solve two problems with others and be sure to record your thinking.

We will then talk about:

- what important ideas about proportional reasoning are being addressed
- what specific curriculum expectations are being addressed

We will then talk about:

- what to listen for in solutions (success criteria) and how that impacts what you do next
- how the sophistication of proportional reasoning grows over the grades

- You have more than 10 counters.
- When you put them in groups of 3, 1 counter is left over.
- When you put them in groups of 4, 3 counters are left over.
- How many counters might you have?
- Are there more groups of 3 or 4? Why?

• How many hexagon pattern blocks would it take to cover a 1 m x 1m space?

Marian Small, 2013

- Connor had 3/5 as much money saved as Aidan.
- Once Aidan gave Connor \$9, Connor had almost 4/5 as much as Aidan.
- How much did each start with?

- Ben drove a total of 483 km.
- For part of that distance, he averaged 97 mph but for part of it he averaged only 64 mph.
- If the whole trip took 5 hours and 50 minutes, how much of it was at 97 km/h and how much of it was at 64 km/h?

- An area is 10 fewer square metres than square yards.
- What is the area in square metres?

Let's share solutions

- As you listen, think about what the responses told you about solvers' understandings.
- Also consider the feedback you would give them.

Did you notice that...

- Some of the same proportional reasoning ideas occur at earlier years as in later years.
- But there is growth in the content being brought to bear.

- http://www.edu.gov.on.ca/eng/teachers/ studentsuccess/ProportionReason.pdf
- http://resources.curriculum.org/ secretariat/engagingmath/files/ EngagingMathGuide.pdf

 K-12: http://www.edugains.ca/resources/ LearningMaterials/ ContinuumConnection/ BigIdeasQuestioning_ProportionalReaso ning.pdf

 Gr 7 – 12 http://www.edugains.ca/ resources/LearningMaterials/ ContinuumConnection/ ProportionalReasoning.pdf

- Math camppp materials on proportional reasoning
- http://gains-camppp.wikispaces.com/ CAMPPP+2010
- http://gains-camppp.wikispaces.com/ CAMPPP+2011+Home

A new EQAO video

<u>http://www.youtube.com/watch?</u>
<u>v=LPkQvN3r8js</u>

Choose an expectation

- Choose one of the expectations on the next slide.
- Create a meaningful proportional reasoning task.
- Think about the criteria you would use to determine if students have been successful.
Expectations

- Describe, thru investigation ... relationship between the size of a unit of area and the number of units needed to cover ...
- Compare fractions to 0, ½ and 1
- Predict frequency of outcome... using theoretical probability
- Develop formulas for volumes of.....

Marian Small, 2013 109

Message

- Proportional reasoning is about unitizing, grouping and counting groups, thinking of comparisons multiplicatively.
- This happens if you model it, talk about it, present tasks that allow for it, and encourage it.
- Being informal for a while may be useful.

Project directions

- PLCs focused on what proportional reasoning ideas to bring out from the curriculum
- Creating short videos or webinars to focus on lesson consolidation

Project directions

- Co-planning, co-teaching, collaborative inquiry using proportional reasoning focused lessons
- Creating short videos or webinars for teachers to help them better understand proportional reasoning ideas

Project directions

- Creating tasks for home, maybe some to be done with parents and some not
- Developing rich tasks (maybe digitally based or maybe not) for proportional reasoning, but always focused on.. "and this is to bring out...."

Download

www.onetwoinfinity.ca EOSDN

Marian Small, 2013